Original Article

Outcomes of High-Risk Pregnancies in Northern Iran: Multivariate Logistic Regression Model

Mahmood Moosazadeh¹ *Seyed Abdolhassan Naghibi² Soghra Khosravi³ Mahdi Afshari⁴ Roghaieh Afsargharehbagh⁵

- 1- Health Sciences Research Center, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
- 2- Department of Public Health, Health Sciences Research Center, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
- 3- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- 4- Department of Community Medicine, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
- 5- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran

*anaghibi1345@yahoo.com

(Received: 6 Aug 2015; Revised: 27 Aug 2015; Accepted: 8 Nov 2015)

Abstract

Background and purpose: High-risk pregnancy is referred to a situation in which mother, fetus or neonate are in higher risk of morbidity or mortality. Because of adverse outcomes of high-risk pregnancies, this study aims to determine these outcomes in the North of Iran.

Materials and Methods: We recruited 803 urban and rural pregnant women in this cross-sectional study via consensus method. Data were collected by a questionnaire and analyzed using descriptive statistics [mean, standard deviation (SD)], chi-square test and multivariate logistic regression model. All data analyses were performed using SPSS software and P < 0.05 was considered significant.

Results: Mean \pm SD, minimum and maximum age of participants were 27.0 ± 6.2 , 14 and 44 years, respectively, 26.3% of which were urban residences. The frequency of adverse outcomes of pregnancy (stillbirth, abortion, and weight under 2500 g) was 10.8%. According to the multivariate logistic regression model, preeclampsia was significantly associated with adverse outcomes of high-risk pregnancy (Odds ratio = 2.7, 95% confidence interval: 1.03-7.10).

Conclusion: Our study showed that preeclampsia during pregnancy is a predictive factor of adverse outcomes of pregnancy such as abortion, stillbirth, and low birth weight.

[Moosazadeh M, *Naghibi SA, Khosravi S, Afshari M, Afsargharehbagh R. Outcomes of High-Risk Pregnancies in Northern Iran: Multivariate Logistic Regression Model. Iran J Health Sci 2015; 3(4): 40-46] http://jhs.mazums.ac.ir

Key words: Pregnancy, High-Risk, Abortion, Stillbirth, Low Birth Weight

1. Introduction

Access to healthcare and prevention of maternal and neonatal mortality are of major components of social justice. Pregnancy is a unique and natural physiologic process among women, but can be deteriorated following background or unexpected disorders of mother or fetus (1,2). Pregnancy is considered highrisk when mother, fetus or neonate is more susceptible to death, disability or disorders. High-risk pregnant mothers are women with history of chronic diseases (diabetes mellitus, hypertension, cardiovascular disorders, ...), history of abortion or stillbirth during previous pregnancies, multiple pregnancy, those aged less than 18 or more than 35 years, gravidity more than four, and intervals less than 3 years between pregnancies (2,3).

many developing countries, In complications due to pregnancy and labor are main causes of maternal mortality. According to the WHO reports, every day, approximately 800 women die due to preventable pregnancy associated causes, 99% of these mortality occurs in developing countries (4). The prevalence of high-risk pregnancies reported up to 20% worldwide. In addition, 50% of perinatal deaths are being observed during high-risk pregnancies. Prevalence of high-risk pregnancy varied in different countries. For example, it is reported as of 31.4% in the north India (5), 59.3% in Tunisia (6) and 40.1% in Nigeria (7).

In a study conducted in Songor, Iran, among 3157 pregnant women, 39.8% were high risk. Urinary tract infection (5.8%), history of abortion (4.02%), age over 35 years (3.8%) or under 18 years (2.7%), inappropriate weight gain (2.4%), anemia (2.4%), and hypertension (1.7%) were most causes of high risk pregnancies (8). In Bam and Yazd, Iran, maternal age more than 35 years, male gender of the neonate, prematurity, and low birth weight, interval lower than 1 year between pregnancies and pregnancy in lower ages, significantly increased the neonatal mortality

(9,10). Gestational age and the amount of weight difference are the most important independent predictive factors for perinatal mortality and morbidity (11).

The above-mentioned reports indicate that high-risk pregnancy can lead to undesirable complications. Since no similar study has been carried out in northern parts of Iran and related factors of pregnancy complications may be different among various geographical areas, this study aims to investigate the adverse outcomes of high-risk pregnancies among women living in Galikesh area, Golestan Province, Iran.

2. Materials and Methods

This cross-sectional study has been performed in the North of Iran (Galikesh district, Golestan province, Iran) in 2014 among 803 pregnant women. These participants were selected through consensus method from rural and urban areas. Data collection was done by a questionnaire. Content validity of the questionnaire was confirmed after being reviewed by experts and available scientific evidences.

These questionnaires consisted information such as residential area, number of children, intervals between pregnancies, body mass history index (BMI), of abortion, cardiovascular disease. hypertension, preeclampsia, and adverse outcomes of pregnancy. Moreover, abortion, stillbirth, and birth weight under 2500 g were considered as adverse outcomes of pregnancy, while live birth more than 2500 g weight was considered as the desirable outcome of pregnancy. Informed consent was provided prior to data collection. Completed questionnaires were reviewed by two researchers, and defects were resolved using original information.

Data analysis was conducted by SPSS software (version 20, SPSS, Inc., Chicago, IL, USA) using mean and standard deviation statistics. chi-square (SD) test.

multivariate logistic regression models (method = enter). Only variables associated with outcome with P < 0.20 during univariate analysis were entered into the multivariate model. P < 0.05 was considered statistically significant in final models.

3. Results

In this study, outcomes of pregnancy among 803 pregnant women were investigated. Mean \pm SD age of participants was 27.0 \pm 6.2 years. Minimum and maximum ages of pregnant women were 14 and 44 years respectively. Of them, 26.3% were living in urban areas. The frequency of undesirable outcomes (stillbirth, abortion, and low birth

weight) was 10.8%.

Frequency of undesirable outcomes was a higher among pregnant women aged more than 35 years (compared to that of 20-35 yearold women), rural habitants (compared to urban residences), those having four or more children (compared to those with children), women with BMI less than 18 (compared to those with BMI more than 18), women with history of abortion (compared to those without) and women with more than 3 years interval between pregnancies (compared to those with less than 3 years interval). Univariate analyses showed that only interval, developing preeclampsia and history of abortion were associated with complications of pregnancy (Table 1).

Table 1. Distribution of clinical and demographic characteristics by pregnancy outcome

Variables	n	Pregnancy outcome n (%)		— Р
		Undesirable	desirable	– r
Total	803	87 (10.8)	716 (89.2)	-
Age group (mother)		` '	` ′	
< 20	121	14 (11.6)	107 (88.4)	0.30
20-35	592	59 (10.0)	533 (90.0)	
> 35	90	14 (15.6)	76 (84.4)	
Residence area		,	, ,	
Urban	211	21 (10.0)	190 (90.0)	0.40
Rural	592	66 (11.1)	526 (88.9)	
Children number		,	` /	
0	276	35 (12.7)	241 (87.3)	0.40
	289	24 (8.3)	265 (91.7)	
1 2 3	153	17 (11.1)	136 (88.9)	
3	51	6 (11.8)	45 (88.2)	
≥ 4	34	5 (14.7)	29 (85.3)	
$BM\overline{I}$		- ()	()	
< 18	54	7 (13.0)	47 (87.0)	0.60
18-24.9	363	42 (11.6)	321 (88.4)	
25-29.9	223	19 (8.5)	204 (91.5)	
≥ 30	163	19 (11.7)	144 (88.3)	
Time duration of Spacing between births		- ()	()	
First pregnancy	251	34 (13.5)	217 (86.5)	0.03
< 3 child	209	13 (6.2)	196 (93.8)	
≥ 3 child	343	40 (11.7)	303 (88.3)	
Abortion history		()	000 (0000)	
Yes	176	26 (14.8)	150 (85.2)	0.04
No	627	61 (9.7)	566 (90.3)	0.0.
Preeclampsia	027	01 (>.,)	200 (20.2)	
Yes	24	6 (25.0)	18 (75.0)	0.03
No	779	81 (10.4)	698 (89.6)	0.05
Heart disease	,,,	01 (10.1)	0,0 (0,.0)	
Yes	7	1 (14.3)	6 (85.7)	0.50
No	796	86 (10.8)	710 (89.2)	0.50
Blood pressure	170	00 (10.0)	710 (07.2)	
Yes	18	3 (16.7)	15 (83.3)	0.30
No	785	84 (10.7)	701 (89.3)	0.50

BMI: Body mass index

Table 2. Multivariate logistic regression model of factors associated with pregnancy undesirable outcome

<u> </u>		1 0 1			
Variables	OR	CI	P		
Abortion history					
No	-	-	-		
Yes	1.6	0.9-2.6	0.07		
Preeclampsia					
No	-	-	-		
Yes	2.7	1.03-7.1	0.04		
Time duration of spacing between births					
Without child	1.3	0.8-2.1	0.30		
< 3 child	0.6	0.3-1.1	0.09		
≥ 3 child	=	-	-		

OR: Odds ratio, CI: Confidence interval

To determine the predictive factors for these complications variables with at least 0.2 significance level were entered into the multivariate models. Adjusted results showed that only preeclampsia during pregnancy [Odds ratio (OR) = 2.7, 95% confidence interval: 1.03-7.10] was a determinant factor of pregnancy complications Table 2].

4. Discussion

Our study showed that more than one-tenth of pregnancies in the study area led to adverse outcomes. According to univariate analyses, preeclampsia, history of abortion, and intervals between pregnancies were significantly associated with these outcomes. In addition, adverse complications were a more common among women with hypertension, cardiac disease, rural inhabitants, aged over 35 years, and multiple pregnancies. However, the differences were not statistically significant.

In a descriptive-analytic study conducted by Jokar et al. among high-risk pregnant women in Shiraz, an association was observed between type of labor and maternal cardiovascular complication. Moreover, 29.8% of neonates were admitted to neonatal care unit due to prematurity, respiratory distress and blood sugar problems. These admissions were significantly related to the maternal labor complications (12). In the current study, complications were more common among

women with cardiac disorders, but these differences were not statistically significant.

Fadaei et al. investigated the effect of maternal age on pregnancy outcomes among 500 pregnant women in Isfahan, Iran, and showed that mothers under 20 and over 35 years compared to those aged between 20 and 35 had 7.9 folds increased odds of odds developing stillbirth. The of preeclampsia for mothers under 20 were 3.9 folds more than that of older mothers. Moreover, the frequency of preterm labor was higher among pregnant women with BMI lower than 20 compared to that of heavier women (13). Similarly, our study showed that the complications of pregnancy were more common among women with BMI lower than 18.

In a case-control study carried out by Rezavand et al. entitled "A comparative study of pregnancy results in adolescents and young mothers referred to the Motazedi hospital in Kermanshah. Iran" 11.5% of adolescent mothers and 3.7% of young mothers had low birth weight neonates lower than 2500 g which is in keeping with the current study (14).

In a nested case-control study conducted by Chaman et al. in a rural area of Iran, 33% of pregnant women in control group, as well as 67% of case croup had history of high-risk pregnancy. That study reported a significant correlation between high-risk pregnancy and neonatal mortality (15).

According to the results of a cohort study performed by Jourabchi et al. among 450 pregnant women referring to Qazvin and Alborz health centers, Iran, frequencies of pregnancy complications such as hypertension, preterm labor and premature neonate were lower among mothers under supervision of "Integrated Management of Maternal Health Care program." These mothers had higher referrals compared to those with routine cares. Although the pregnancy mentioned program had only 60% coverage in Alborz, it seems that it had an effective role in maternal health promotion (16).

Another cross-sectional study carried out by Faraji et al. in Rasht Hospital, Iran, incidences of preterm and post-term labor in twin pregnancies were 60.4% and 0.6% respectively. In addition, incidences of fetal gestational abnormality, diabetes, preeclampsia during twin pregnancies were 2.3%. and 8.8% respectively. Moreover, 65.8% of such mothers underwent cesarean section and 66.8% of them labored neonates under 2500 g (11).

About 118 deaths before 1 year age were compared with 236 controls during a casecontrol study. Factors such as intervals between births (OR: 28.8) and previous history of abortion (OR: 4.5) were significantly associated with infant death (17). Shorted intervals, higher risk of complications in pregnancies. This fact should be taken into consideration in women care systems during fertility age and pregnancy (18). Since low birth weight is associated with low socio-economic status and maternal situations such as anemia, malnutrition, inadequate pregnancy cares and complications of pregnancy, preventive activities should be carried out to reduce the risk of low birth weight (17).

Results of an American survey showed that eclampsia and chronic hypertension is attributed with adverse outcomes in mothers and neonates (19). A systematic review

including the results of 22 primary studies reported that obesity among pregnant women leads to complications for them and their neonates. These mothers in compared with normal pregnant women had higher rates of preeclampsia, gestational diabetes, depression, cesarean surgery, and wound infection leading adverse outcomes such as prematurity, stillbirth, and low birth weight (20). Afshari et al. showed that 63% out of 62 neonatal deaths in Toiserkan district, Iran, occurred in the absence of any risk factors during pregnancy. They also reported that age over 35 years (16.1%) and gravity more than four (16.1%) were the main risk factors for death (21). Miletic et al. in Croatia investigated the outcomes of pregnancies among 2099 more than 40 year-old women. observed that 19.8% Thev of pregnancies led to miscarriage. They also found that perinatal deaths were more common among these women compared to those aged 20-39 years (22). In Latin America, the rate of fetal death among 837,233 singleton births registered in the Perinatal Information System database was 17.6/1000 live births. Lack of pregnancy cares [risk ratio (RR): 4.26] and small for gestational age (RR: 3.26) were reported as the main risk factors of fetal death (23). Outcomes of pregnancies were compared between women with and without risk of abortion in Tehran. This study showed that spontaneous preterm delivery (RR: 1.4) and placental abruption (RR: 1.1) were more common among high-risk women (24).

As one of the limitations of the current study, adverse outcomes of pregnancies such as abortion, stillbirth, and low birth weight were investigated ignoring their specific weight and degree of importance. That was due to the low frequencies of each of these complications.

In conclusion, our study showed that preeclampsia during pregnancy is a predictive factor for undesirable complications such as abortion, stillbirth, and low birth weight.

Conflict of Interests

The Authors have no conflict of interest.

Acknowledgement

would Authors like acknowledge to Mazandaran University of Medical Sciences, Iran, for financially supporting this study (Grant No: 92-199).

References

- 1. Holowko N, Chaparro MP, Nilsson K, Ivarsson A, Mishra G, Koupil I, et al. Social pre-pregnancy BMI inequality in gestational weight gain in the first and second pregnancy among women in Sweden. J Epidemiol Community Health 2015: pii: 205598.
- 2. James DK, Steer PJ, Weiner CP, Gonik B. High risk pregnancy: Management options. Philadelphia, PA: Saunders; 2011. p. 76-91.
- 3. Blanc AK, Winfrey W, Ross J. New findings maternal mortality age patterns: aggregated results for 38 countries. PLoS One 2013; 8(4): e59864.
- 4. World Organization. Health Maternal mortality [Online]. [cited 2014 May]; Available from: URL: http://www.who.int/mediacentre/factsheets/fs3 48/en/
- 5. Bharti M, Kumar V, Kaur A, Chawla S, Malik M. Prevalence and correlates of high risk pregnancy in rural Haryana: A community based study. Int J Basic Appl Med Sci 2013; 3(2): 212-7.
- 6. Bouafia N, Mahjoub M, Nouira A, Ben AR, Saidi H, Guedana N, et al. Epidemiology of high risk pregnancy in Sousse, Tunisia. East Mediterr Health J 2013; 19(5): 465-73.
- 7. Aniebue UU, Aniebue PN. A risk assessment for pregnancy using the World Health Organization classifying form in primary health-care facilities in Enugu, Nigeria. Trop Doct 2008; 38(3): 135-7.
- 8. Azizi A. The prevalence of the causes of highrisk pregnancies in pregnant women of sonqor city, 2011. Iran J Obstet Gynecol Infertil 2015; 18(153): 10-9.

- 9. Soleimani Zadeh L, Danesh A, Basri N, Abaszadeh A, Arab M. Assessment of high risk pregnancy in Bam Mahdieh maternity hospital, 2001. J Shahrekord Univ Med Sci 2004; 6(2): 67-73. [In Persian].
- 10. Fallahzadeh H, Golestan M, Rezvan R, Zafar Mohtashami A, Hakimi Kh, Ahmad Abadi M, et al. The prevalence of and related factors in neonatal mortality in Yazd. J Shaheed Sadoughi Univ Med Sci 2001; 8(4): 54-7. [In Persian]
- 11. Faraji R, Asgharnia M, Zahiri Z, Dalil Heirati SF. Assessment of the frequency of twin pregnancies and its associated complications in Rasht's Alzahra Hospital during 1997-2002. Iran J Surg 2011; 19(4): 15-21. [In Persian]
- 12. Jokar A, Garmaznegad S, Momeni E, Mohebi Z. Outcome of high risk pregnancies referring to the maternity hospitals of Shiraz University of Medical Sciences in 2009. Dena Journal. 2011; 2(22): 1-6. [In Persian]
- 13. Fadaei B, Movahedi M, Akbari M, Ghasemi M, Jalalvand A. Effect of maternal age on pregnancy outcome. J Isfahan Med Sch 2011; 29(145): 855-60. [In Persian]
- 14. Rezavand N, Zangane M, Khosravi SH, Rezaee M. A comparative study of pregnancy results in adolescents and young mothers referred to the Motazedi Hospital in Kermanshah. J Urmia Nurs Midwifery Fac 2009; 136-41. [In Persian]
- 15. Chaman R, Yunesian M, Golestan B, Holakouie Naieni K. Evaluation of the effects of high-risk pregnancy on neonatal mortality in a rural area of Iran: A nested case-control study. Iran J Epidemiol 2008; 3(3-4): 1-6. [In Persian]
- 16. Jourabchi Z, Ranjkesh F, Asefzadeh S, Sann LM. Impact of integrated maternal health care on reducing pregnancy and delivery complications in Qazvin province (2009-2011). J Qazvin Univ Med Sci 2013; 16(4): 47-53. [In Persian]
- 17. Namakin K, Sharifzadeh Gh. The evaluation of infants mortality causes and its related factors in Birjand. J Isfahan Med Sch 2009; 27(95): 275-82. [In Persian]
- 18. Al-Hosani HA, Brebner J, Bener AB, Norman JN. Study of mortality risk factors for children under age 5 in Abu Dhabi. East Mediterr Health J 2003; 9(3): 333-43.

- 19. Barbosa IR, Silva WB, Cerqueira GS, Novo NF, Almeida FA, Novo JL. Maternal and fetal outcome in women with hypertensive disorders of pregnancy: the impact of prenatal care. Ther Adv Cardiovasc Dis 2015; 9(4): 140-6.
- 20. Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev 2015; 16(8): 621-38.
- 21. Afshari M, Karimi Shahanjarini A, Khazaei S. Factors determining infant mortality in highrisk pregnancies: A cross-sectional study. Pajouhan Scientific Journal 2014; 12(4): 21-7.
- 22. Miletic T, Aberle N, Mikulandra F, Karelovic D, Zakanj Z, Banovic I, et al. Perinatal outcome of pregnancies in women aged 40 and over. Coll Antropol 2002; 26(1): 251-8.
- 23. Conde-Agudelo A, Belizan JM, Diaz-Rossello JL. Epidemiology of fetal death in Latin America. Acta Obstet Gynecol Scand 2000; 79(5): 371-8.
- 24. Dadkhah F, Kashanian M, Eliasi G. A comparison between the pregnancy outcome in women both with or without threatened abortion. Early Hum Dev 2010; 86(3): 193-6.